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The natural language to describe a symmetry break/phase transition is the one 
of collective symmetry-adapted modes  (Landau Theory)

primary distortion mode : order parameter

Unstable collective degree of freedom:

T>Tc

T<Tc

F. Energy

Q

E = Eo + 1/2 κ(T) Q + …
2

κ(T)<0    T <Tc

distortion modes: 

displacive type: local variable =atomic displacements

order-disorder type: local variable: site occupation probabilities

magnetic type: local variable: atomic magnetic moments



Distorted Structure = High-symmetry Struct + “frozen” di stortion modes

distortion mode = Amplitude * polarization vector

e2

e3

e4

e1

u(atoms) = Q e

polarization vectoramplitude

e =  ( e1 ,e2 ,e3 ,e4 )

Description of a displacive “mode”: 

normalization: |e1|2 + |e2|2 + |e3|2 + 2 |e4|2 =1
(within a unit cell)



Modes in the description of the statics (STRUCTURE) of a distorted
solid:

E = Eo + 1/2 ΣΣΣΣκκκκj(k) Q i(k) + …
Normal (static) coordinates

stiffness coefficients

(Free) Energy around the high-symmetry non-distorted con figuration: 

2

κj(k)

k
κj(k)<0
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Energy as a function of the
amplitude of an unstable Q:

E
κ <0

Q

Ab-initio calculation of static
normal modes in a ferroic:

Symmetry of distortion modes:
irreducible representations (group theory)
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T(g) Q =  Q’ ≠ Q

Irreducible
representation
of G (irrep)
(matrices)
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Phase Transition / Symmetry break / Order Parameter

Order parameter Q = (Q1,Q2) = Q (a1,a2) 

Symmetry break

G H

Switchable quantities are those that were zero in G (“spontaneous” in F)

Q1

Q2

High symmetry Low symmetry
G contains H

a1
2+a2

2 =1

Symmetry group G =  {g}

Key concept!  (Landau):
It defines the type of symmetry break

g belongs to F

g does not belong to F: Q’ equivalent 
but distinguishable state 

T(g) Q =  Q



Multistability: contability of distinct domains:

distinct Ferroic states: only if the symmetry operations g contain 
different rotational parts:

G H
distinct domains/states: {Q’} T(g) Q =  Q’

Number of distinct equivalent states =
Order of G

Order of H

We need to know the irrep
of the order parameter

Number of distinct ferroic states =
Order of P G

Order of P H

Two levels of knowledge of the symmetry of a distorted phase :

1) pair of points groups: (PG,PH)

2) space group G + active irrep(s) + plus direction order parameter(s) Q

G = H+ g2H + ... + gnH

= n (index of H)

coset decomposition:

= it (t-index)



Li et al.  J. Appl. Phys. (2005)

Example: The orthorhombic Amm2 structure of BaTiO 3

b

c

Amm2

Amm2

Polarization

P4mm

P4mm

Amm2

R3m

Pm-3m

R3m

Q(100)

Q(1/√2,1/√2,0)

Q(1/√3,1/√3,1/√3)
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Ferroelectric Domains in Amm2 BaTiO 3

Number of domains = 48/4=12

12 eq. directions for the order parameter: 

Order of m-3m = 48

Amm2: Q(0,1/√2,1/√2)

(m-3m, mm2)
high symmetry Pm-3m
order parameter:
irrep T 1u (vector representation)

Order of mm2 = 4
P

P P

P

(0,1/√2,1/√2)
(0,-1/√2,1/√2)
(0,-1/√2,-1/√2)
(0,1/√2,-1/√2)

(1/√2,0,1/√2)
(-1/√2,0,1/√2)
(1/√2,0,-1/√2)
(1/√2,0,-1/√2)

(1/√2,1/√2,0)
(-1/√2,1/√2,0)
(-1/√2,-1/√2,0)
(1/√2,-1/√2,0)



Hierarchy of modes:

Von Neumann principle:
all modes/variables compatible with the symmetry 
will be present in the total distortion ….

But not all with the same weight!:

primary mode(s): unstable

secondary modes: induced by the presence of the primary one(s)

it drives  the phase transition

order parameter

much weaker in 
general



½ κκκκ2 Q2  +
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1.5Example of a (free)  energy map with
primary (Q1) and secondary (Q2) 
distortion modes:

Q2

Q1
E = Eo + ½ κκκκ1 Q1 +

2 2
γγγγ Q1 Q2 +

κκκκ1<0 κκκκ2>0
3

Anharmonic allowed coupling

Equivalent ferroic stable structures
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Hierarchy of spontaneous modes/variables

faintness index



Secondary spontaneous strain in Amm2-BaTiO 3

Secondary spontaneous modes/variables: 
everything that is allowed by symmetry in the disto rted phase !

Then energy minimum for:

Lowest coupling term allowed by symmetry in the (free) energy (symmetry invariant):

In addition, the usual elastic energy: ½ C44 (εxy
2+εxz

2+εyz
2) 

Order parameter (polar mode): (Qx,Qy,Qz) – irrep T1u

shear strains: (εxy, εxz, εyz) – irrep T2g

γ γ γ γ (Qx,Qyεxy+ QxQz εxz+ QyQzεyz) linear in the secondary variable

System-dependent coefficient: symmetry cannot tell us the magnitude of the coupling – only if it is possible

εxy = - QxQy
γγγγ

C44
Q(0,1/√2,1/√2)
Q(0,-1/√2,1/√2)
Q(0,-1/√2,-1/√2)
Q(0,1/√2,-1/√2)

(Qx,Qy,Qz)

εxz = - QxQz
γγγγ

C44

εyz = - QyQz
γγγγ

C44

Ferroic states/domains

(εxy, εxz, εyz)
(0,0, εo

yz)
(0, 0, -εo

yz)
(0,0, εo

yz)
(0,0, -εo

yz)



c

b

Amm2 – BaTiO 3: strain as secondary mode/variable

P

PP

P

εyz < 0

-εyz > 0

Proper ferroelectric
Improper ferroelastic

One can turn 90º the polarization switching the strain with a stress …



Secondary mode in the Amm2 structure of BaTiO 3

Mode decomposition of structure distortion:

T1u - mode T2u - mode

QT1u >> QT2u

c

b

QT1u x + QT2u x

QT2u ~ QT1u
3 faintness index

secondary mode

primary mode-order parameter:



An “improper” ferroelectric (and ferroelastic)  - Gd 2(MoO4)2

A Polar (ferroelectric) mode as a secondary mode

P421m Pba2
160 C

(Z=2) (Z=4) cell duplication

P421m

Pba2

Cmm2

ΓΓΓΓ3 (B2)
M2+M4

primary mode

M=( 1/2, 1/2, 0)

QM2M4= 1.6191 Å

QΓ3   = 0.0716 Å

secondary
mode

( 42m ------ mm2)

polar mode/polarization

antiferrodistortive mode (multiplies the unit cell)
wave vector ≠ 0



To know which is the “proper” ferroic property, one has to identify the
order parameter symmetry (irrep or irreps of G)

General Rules

To know which is the symmetry F of the distorted phase, one can then use
the invariance equation:

G H?for a given symmetry break

T[g] Q =  Q 
g belongs to H

H

Knowing the pair of symmetries (G,F) is sufficient to predict all ferroic properties (but
not their magnitudes!). 

secondary spontaneous ferroic variables (“improper” ferroic properties):

X ~ F
(n)

[Q1,…,Qn] 

Polynomial of order n (faintness index)

energy coupling:  X.F
(n)

[Q1,…Qn] 

matrix irrep

T[g] Q =  Q’ with g belonging to G, but not HDistinct ferroic states obtained by:



A practical guide:

case 1: We know a structure with space group F and we want to
know/predict if it can have ferroic properties and/or have
some phase transition at higher temperatures

? H
pseudosymmetry search

We search for a structure with space group G (super group of F) such that:

Structure G = Structure F + small (symmetry-breakin g) distortion

Program PSEUDO



case 2: We know the high symmetry and the active irrep
or order parameter and we want to know the
possible symmetries of the distorted phase

G ?
possible isotropy subgroups for a given active irrep?

irreps of P4mm at k=0 (Γ point) for 1-dim irreps rather trivial, for n-dim one must apply the 
matrix equations or use some group theoretical "tricks"

P4mm

P4

Pmm2

Cmm2 

T[g] Q=Q      {g}=F     

Pm
C
m
P1 

isotropy subgroup depends on the "direction" of the
2-dim order parameter.

A practical guide:



G ?
possible isotropy subgroups for a given active irrep?

Relax.... computers can do it for you!: http://stokes.byu.edu/isotropy.html

There is also a book of
isotropy subgroups:

H. T. Stokes and D. M. Hatch, 
Isotropy Subgroups of the 230 
Crystallographic Space Groups
(World Scienti fififific, Singapore, 1988). 

case 2:



G ?
possible isotropy subgroups for a given active irrep?

Program INVARIANTS gives the isotropy subgroups as a by-product:

case 2:



Prediction of probable symmetries for compounds of a family, or for the same
compound at different conditions due to a common active irrep, with the order parameter
taking different directions:

Example: Perovskites are known to have systematically a soft or unstable mode with
irrep R4+:

isotropy subgroups of R4+:

G ?
possible isotropy subgroups for a given active irrep?

case 2:



A practical guide:

case 3: We know the symmetry break and we want to identify the active
irrep (inverse Landau problem)

G H
active irrep?

comparison of the unit cells k-vector(s) of the active irrep:

star of the active irrep

eik.T=1, transl. T  belongs to F

k.T=2πn

irreps of P4mm at k=0 (Γ point) 

from the possible isotropy subgroups,

identify possible active irrep with the known k-vector

via computer:

COPL (isotropy)

SYMMODES (Bilbao server)   --- as by-product

AMPLIMODES (Bilbao server) --- as by product

P4mm
P4

Pmm2

Cmm2 

Pm
C
m
P1 



Pseudo-proper ferroic properties: the case of ferroelectri c KDP

I4-2d Fdd2 ( 42m ------ mm2)

No cell multiplication

(order parameter q=0)
F

two possibilities:

Pz order parameter – εxy secondary

Pz secondary – εxy order parameter

Proper ferroelect. –pseudo proper ferroelast.

Pseudo-proper ferroelect. – proper ferroelast.
Ferroic states/domains: (Pz , εxy), (-Pz , -εxy) 

εxy ~ Pz

faintness index n=1

….A stress can change sign of the polarization
…An electric field can change sign of the strain

bilinear coupling:   Pz εεεεxy

I
εεεεxy

Pz



P63/mmc            P63cm (a+2b, -2a-b,c; 0 0 0)     

active irrep?

active irrep

from SYMMODES and SUBGROUPGRAPH (Bilbao server):from COPL:

secondary irreps/modes

spontaneous crystal tensor quantities that transform 
according to GM2-: Polarization along z

Improper ferroelectric

coupling of secondary variables/modes with order parameter (faintness index)? : program INVARIANTS (Isotropy) 

case 3:



P6322

C2221

P21

P312

C2 P212121P21212Γ6

Γ4 Γ5

M3 M2

P6322                  P21 (c,-a-2b,a; 3/4 0 3/4)     

from SYMMODES and SUBGROUPGRAPH (Bilbao server):

P21 is not an isotropy subgroup: more than one
active irrep necessary. 

In this case, two active irreps are necessary. which
ones? 

GM6: responsible of polarization along the
monoclinic axis: it can be a primary or secondary
effect. Only experiment or simulations can tell.

probable intermediate phase !

active irrep?

F is not an isotropy subgroup: two active irreps are necessary ....

case 3:



2 order parameters : Pseudo-proper ferroelasticity of SrAl2O4
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Γ6

M2-1q
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E(mRy) 

P6322
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P312
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P6322 P21

(Larsson et al. 2008)

two unstable irrep distortions:



angle beta  (º)

E(mRy) 
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Pseudo-proper ferroelasticity of SrAl 2O4 seen in ab-initio calculations
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Mode 
Ampl. (Å) 

M2-1q
Γ6

Γ6

angle beta  (º)

switch of the
polar mode

Varying only the monoclinic shear strain

Including relaxation of the optic modes



A practical guide:

case 4: We know the symmetry break and active irrep and want to derive 
further "consequences".

• spontaneous ferroic (switchable) quantities – only ferroic species needed

• primary and secondary spontaneous degrees of freedom/modes: transition mechanism.

• separation of structural parameters into collective modes with very different weigth in the
distorted structure. 

• temperature/pressure dependence of variables/modes: Landau analysis

• Domain structure: orientational relations, domain walls, domain related equivalent structures

COPL (Isotropy) SYMMODES

ISODISPLACE (Isotropy) AMPLIMODES

COSETS

Amplimodes+ FullProf= direct struct. refinement 

INVARIANTS (isotropy)

COSETS NORMALIZER

POINT


