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 The program MAXMAGN in the Bilbao Crystallographic Server 
(http://www.cryst.ehu.es) is a computer tool, freely available in the web, which facilitates 
the systematic use and application of magnetic symmetry in the analysis and 
determination of commensurate magnetic structures. 

 It is a known fact that most of the reported magnetic structures are “1-k” magnetic 
phases, i.e. their magnetic orderings have a single propagation vector. Furthermore, most 
of them have spin configurations that possess one of the possible maximal magnetic 
symmetries compatible with its propagation vector. This second property is not well 
known and its importance and utility has not been yet exploited. The program MAXMAGN 
makes use of this property in a systematic way by calculating all possible maximal 
magnetic symmetries and deriving magnetic structural model consistent with them. The 
assumption of a maximal magnetic symmetry restricts the possible spin arrangements, 
and limits the number of free parameters or degrees of freedom to be determined 
experimentally. In simple cases, these restrictions are equivalent to those obtained 
applying the representation method, but in general they can be more restrictive.  

The propagation vector of a 1-k magnetic structure can in principle be identified 
from diffraction experiments. Once this modulation vector is known, the few possible 
magnetic space groups (i.e. Shubnikov groups) consistent with this vector fulfilling that 
they have a maximal possible symmetry can be systematically determined. From their 
knowledge, all possible alternative spin models of maximal symmetry consistent with the 
observed propagation vector can be derived.  This is the main purpose of MAXMAGN. The 
alternative models provided by the program can then be contrasted with and fitted  to the 
experimental data.  

Using as input only the knowledge of the space group of the paramagnetic phase 
(we shall call it in the following parent space group) and the propagation vector k, 
MAXMAGN first provides all possible magnetic space groups of maximal symmetry 
consistent with this propagation vector. In the following we shall call these groups “k-
maximal magnetic groups”. If a paramagnetic structure is also introduced, the program 
determines the spin arrangements allowed for each of these possible k-maximal 
symmetries, and defines their refinable parameters. The output is organized in such a way 
that the program can be systematically applied to identify and analyse all possible 
alternative spin models. A CIF-like file can then be obtained for each of the alternative 
magnetic structures of k-maximal symmetry, which can then be refined in programs like 
JANA2006 [1]  or FULLPROF [2], or they can be introduced in the program ISODISTORT 
[3] for mode analysis, or transformed with the structure editor STRCONVERT of the 
Bilbao Crystallographic Server. These CIF-like files can also be used for 3D visualization 
with VESTA[4] or Jmol [5]. A direct link to the tool MVISUALIZE, also in the Bilbao 

http://www.cryst.ehu.es/


crystallographic server also allows an inmediate visualization of each of the alternative 
models. 

The magnetic structure models provided by the program are given by default in a 
setting as similar as possible to the one of the parent paramagnetic phase (the so-called 
parent like setting), but they can also be obtained in a standard setting of the magnetic 
group considered, or alternatively in a setting defined by the user.  

If none of the models with k-maximal symmetry are satisfactory, the program can 
descend to lower symmetries, adding in this controlled way additional degrees of 
freedom. The program also allows to derive, for a given spin model, all physically 
equivalent spin arrangements to which the structure can in principle be switched, as they 
correspond to twin-related or, in general, domain-related spin configurations. 

The program MAXMAGN provides an alternative approach to the traditional 
representation method for the parameterization of magnetic structures, which in most 
cases is more intuitive and direct. The direct use of magnetic symmetry arguments allows 
to establish in many cases (when the active irrep is more than one-dimensional)  
additional constraints fulfilled by the magnetic phase. 

In the following, by means of several exercises, we will go step by step, through the 
different capabilities of the program, using at some points some additional tools of the 
Bilbao Crystallographic Server. At the end of each example, a comparison with the 
representation method, i.e an alternative analysis using irreps (irreducible 
representations) of the parent space group,  will also be presented. 

 

Example 1.  CrCl2 

The paramagnetic structure of CrCl2 can be summarized as (Howard et al., PRB 72, 
214114): 

Pnnm (#58) 

Lattice parameters: 
6.8257 6.2139 3.4947  
Asymmetric unit: 
Cl   0.35860 0.28930 0.00000 
Cr  0.00000 0.00000 0.00000 

Magnetic atom: Cr 

The magnetic phase of this compound is known to have a propagation vector: 
k=(0, 1/2, 1/2).  
 
We can use MAXMAGN to explore the possible magnetic orderings of k-maximal 
symmetry compatible with the observed propagation vector. To have k-maximal 
symmetry means that the magnetic space group associated with the spin configuration, 
besides being a subgroup of the grey magnetic group Pnnm1' compatible with the 
observed propagation vector, fulfills that there exists no other subgroup of Pnnm1' (also 
compatible with the propagation vector) containing it  as a subgroup. 



a) Open the main page of MAXMAGN, introduce the number of the space group of 
the paramagnetic phase and the propagation vector, and submit. Four possible k-
maximal magnetic space groups are then listed by the program (Figure 1). Their labels as 
standard Shubnikov groups (BNS setting) are shown in the first column. Although these 
labels are equal by pairs, they correspond to different subgroups of Pnnm1', and the 
second column shows the basis transformations necessary to describe each subgroup in 
the standard setting (click on the heading "Transformation  matrix" to see its definition). 
This transformation is different for the listed subgroups with the same group-type label. 
The transformation is given by a 3x3 matrix P and a column vector p, such that the unit 
cell basis corresponding to the standard setting as, bs, cs is given by: 

   , , , ,s s s p p pa b c a b c P   

where ap, bp, cp are the unit cell basis of the Pnnm space group, while the origin for the 
description of the subgroup in the standard setting must also be shifted by p,  with this 
vector being given by its components in the parent basis. 

It is important to stress that the list only includes one subgroup per conjugate class of 
subgroups. The other subgroups of each class are physically equivalent and correspond to 
domain-related configurations. 

 

Figure 1: List of distinct k-maximal magnetic space groups for a parent space group Pnnm and a 
propagation vector (0, 1/2, 1/2), as given by MAXMAGN.  

b) Click on the label of the first group for a direct link to MGENPOS with the listing of 
the Shubnikov group Pa21/c (#14.80) in BNS standard setting (see Figure 2). This is a type 



IV magnetic space group, with eight distinct representative operations, namely four non-
primed operations forming the group P21/c (#14), plus all these operations multiplied by 
the "antitranslation" {1'|1/2, 0, 0}. This MGENPOS page has additional links to the OG 
description of the group, the different possible Wyckoff positions, etc. But this 
information refers to the standard setting, which requires the use of an oblique cell, and 
therefore it is far from the description of the structure in the parent Pnnm phase. In 
general, a description of the magnetic subgroup in a setting as similar as possible to the 
one used for the parent phase is in practice more useful. 

 

Figure 2: List of the 8 representative operations of the magnetic space group Pa21/c (#14.80), as obtained 
when clicking on the group label in the list shown in Figure 1 (direct link to MGENPOS). Together with the 
translation lattice these operations span the full group in the setting that we consider as BNS standard. 

 

b) Come back to the main output list shown in Figure 1 and click now on the column 
headed with "General positions" for the first magnetic subgroup (for the moment we 
leave unused the optional buttons of the previous two columns). We get then a table 
which on its left lists the operations of this magnetic space group in its standard setting, 
and on the right the same corresponding operations but in a setting that we call "parent-
like" (see Figure 3). This non-standard setting keeps the origin and also the unit cell 
orientation of the parent/paramagnetic phase, but multiplying the cell parameters to 
produce a supercell  consistent with the periodicity mantained by the propagation vector. 



At the heading of the list one can find the transformation from the parent-like to the 
standard setting, similarly as we had in the previous table. Note that the listed 
transformation is however different as it transforms the used "parent-like" basis (and not 
the parent one) to the standard setting. 

 

Figure 3: List of the representative operations (incomplete) of the magnetic space group Pa21/c (#14.80), 
as obtained when clicking on the column "General positions" of the initial list of MAXMAGN shown in Figure 
1. The operations on the right are described in the so-called parent-like setting indicated on the heading of 
the table, which keeps the crystallographic directions of the parent phase, and introduces a supercell 
consistent with the propagation vector. 

      As k=(0,1/2,1/2) in this example, the parent like setting is (a,2b,2c;0,0,0), and a 
centering {1|0, 1/2, 1/2} is obliged as the lattice translation b+c is mantained by a spin 
wave with wave vector (0,1/2,1/2). You can localize this operation in the list. One can also 
see that this magnetic group maintains the inversion center at the origin, as it keeps the 
inversion operation {-1|0, 0, 0}, while the monoclinic axis that is maintained is along the x 
direction in the Pnnm setting. 

c) Come back to the main ouput list shown in Figure 1 and click on the fourth 
column (headed with "General positions") for the second group in the list , which 
has the same label Pa21/c (#14.80). One can see that this second subgroup maintains the 
inversion operation {-1|0, 1/2, 0} (i.e. {-1|0, 1, 0} in the parent Pnnm setting), but the 
inversion at the origin {-1|0, 0, 0} is not present. This means that an ordering according to 
this second subgroup breaks the inversion center at the origin, while it keeps the 
inversion center that is located at the point (0,1/2,0) in the Pnnm1' grey group. Note that 
this alternative subgroup of Pnnm1', despite being the same type of magnetic space group 



and therefore having the same label as group type as the first one in the list, is NOT 
equivalent and it is therefore listed as a distinct possible k-maximal magnetic symmetry. 

d) Come back to the main output list shown in Figure 1, and click on the fourth 
column (headed with "General positions") to get the information on the third 
subgroup of type Ca2/m (#12.64). One can see that in this case the standard setting of 
the magnetic space group only differs from the parent-like one, by a permutation of the 
axes. The monoclinic axis of this subgroup is along the z direction of the Pnnm setting. A 
comparison with the fourth group of the same type shows that, as in the previous pair of 
subgroups of the same type, they maintain different alternative inversion centers from 
the parent phase.  

e) The symmetry hierarchy can be further explored using the program k-
SUBGROUPSMAG.  By introducing as parent space group Pnnm1', the propagation vector 
and, as end subgroup Ps-1, i.e. one restricted to the presence of the space inversion 
operation and the antitranslation forced by the propagation vector, one obtains a 
hierarchical graph of the subgroups consistent with the propagation vector (0,1/2,1/2), 
as shown in Figure 4. 

 

Figure 4: Graph (obtained with k-SUBGROUPSMAG) of all possible magnetic symmetries for a magnetic 
ordering with a paramagnetic structure with space group Pnnm and a propagation vector (0 1/2 1/2), 
assuming that at least space inversion is also maintained. Only the BNS label of the corresponding group 
type is indicated. The k-maximal magnetic groups are highlighted with elliptical frames. Only one subgroup 
per conjugate class is shown. The two Ps-1 space groups differ in the location of the inversion center. Only 
one of the two allows a non-zero magnetic moment at the origin, namely the one with the inversion center 
at the origin (where the Cr magnetic atom lies).  

In this example, non-polarized magnetic neutron diffraction is not subject to any specific 
systematic absence for any of the two possible subgroups. We leave therefore unchecked 
the fifth column in the first output page headed with "systematic absences", which is a 
link to the tool MAGNEXT, also available in the Bilbao server, for the calculation of the 
systematic absences for non-polarized magnetic diffraction.  We will see the usefulness of 
this option in other examples. 

f) Come back now to the first input page of MAXMAGN with the main menu, click on 
the option "structure data of the paramagnetic phase will be included",  keeping the 
space group and propagation vector, and submit. In the next pages introduce the 
structural data of CrCl2 listed above (either uploading a cif file or by hand), indicating that 
the Cr atom is magnetic. The structure data of the paramagnetic phase must be described 



in the standard setting of the space group of the paramagnetic phase (to work in a non-
standard setting, click on the option "Non-conventional setting"; thus, the space group of 
the paramagnetic phase will be obtained from the symmetry operations present at the cif 
file). The first output page lists now the same four k-maximal subgroups, but two of them 
are highlighted with a darker background (see Figure 5). These latter are those that allow 
a non-zero magnetic moment for at least some of the atoms at the Cr site. The Table 
includes now an additional column on the right under the heading "Magnetic structure". 

 

Figure 5: List of distinct k-maximal magnetic space groups for a parent space group Pnnm and a 
propagation vector (0, 1/2, 1/2), as given by MAXMAGN, after having introduced the paramagnetic 
structure of CrCl2 in the first input steps. The groups with darker background are the only ones allowing a 
non-zero average magnetic moment for at least some of the Cr atoms. 

g) Click in the "Magnetic structure" column for the second possible group with label 
Ca2/m (#12.64).  The program lists the asymmetric unit of a magnetic structure 
satisfying this symmetry (see Figure 6). The first column tabulates the atomic positions, 
where one can see that both Cr and Cl split into two symmetry-independent sites. The 
second column indicates the complete orbit for each independent atom for each 
independent site (Wyckoff orbit), including the magnetic moment relations. Multiplicity 
and symmetry restrictions on the magnetic moment of each site are shown in the 
following columns, while on the final column, for magnetic atoms, a menu allows to give 
specific values to the allowed moment components along the crystallographic axes (units 
assumed: bohr magnetons). One can see that the two independent Cr sites must 
necessarily have their moment along different directions. Thus, this symmetry does not 
allow a collinear ordering. 



 

Figure 6: Atomic positions and magnetic moments of the asymmetric unit for the subgroup of type Ca2/m 
(#12.64) listed N. 3 in Figure 5, as obtained when clicking in the column "Magnetic structure". The table 
indicates the Wyckoff orbit of positions and moments corresponding to all atoms that are symmetry related 
with the one listed as representative in the asymmetric unit (all described in the parent-like setting). The 
number of symmetry related atoms within the used unit cell (multiplicity) is given in the fourth column. The 
fifth column indicates the symmetry restrictions on the value of the components of the magnetic moment 
for the representative atom listed in the second column, while the last column on the right allows to 
introduce specific values for the symmetry free moment components. 

h) Come back to the previous output page and explore the other alternative 
maximal symmetry Pa21/c (#14.80). In this case, both Cr and Cl site do not split (see 
Figure 7). The direction of the magnetic moment of the Cr atom is not restricted by 
symmetry, but its Wyckoff orbit shows that a collinear ordering can occur if the moments 
are restricted on the plane yz or along x (component mx has a different set of sign changes 
through the orbit than the components my and mz, which change sign from one position to 
another in the orbit in the same form). In accordance with the models reported for this 
structure, let us assume that the moments lie on the xy plane. According to the listing in 
Figure 7, this implies a non-collinear model if both components mx and my are non-zero.  
Introduce some non-zero values for the Mx and My components of Cr, say 3 and 1. Using 
the appropriate button obtain and save a mCIF file (a CIF-like file) of the resulting 
magnetic structure. The page showing the mCIF file to be saved has also a button that is a 
direct link to the tool MVISUALIZE in the Bilbao crystallographic server and allows an 
inmediate 3D visualization of the chosen magnetic model. 



 

Figure 7: Atomic positions and magnetic moments of the asymmetric unit for the subgroup of type Pa21/c 
(#14.80) listed N. 1 in Figure 5, as obtained when clicking in the column "Magnetic structure". The table 
indicates the Wyckoff orbit of positions and moments corresponding to all atoms that are symmetry related 
with the one listed as representative in the asymmetric unit (all described in the parent-like setting). The 
number of symmetry related atoms within the used unit cell (multiplicity) is given in the fourth column. The 
fifth column indicates the symmetry restrictions on the value of the components of the magnetic moment 
for the representative atom listed in the second colum (if any), while the last column on the right allows to 
introduce specific values for the symmetry-free moment components. 

i) Open the mCIF file as a text file and observe the listing of the symmetry 
operations. The centering and "anti-centering translations" are listed separately (see 
Figure 8). There are four centering translations and antitranslations including the 
identity, plus four rotational or roto-inversion operations. The 16 operations that were 
listed in a previous output page are the result of multiplying these 4 "rotational" or "roto-
inversion" operations by the 4 possible translational or "anti-translational" operations. 



 

Figure 8: Part of the mCIF file for the Pa21/c (#14.80) model of CrCl2 that contains the information on the 
magnetic space group in the used  parent-like setting (a,2b,2c;0,0,0).  

j) At the end of the mCIF file observe the listed atomic positions and moments of the 
asymmetric unit. To be noted that the file only includes the magnetic moment 
components (along the crystallographic axes) of a single Cr atom (see Figure 9). The 
values of the rest of Cr atoms in the unit cell are unambiguously determined by the 
application of the operations of the defined magnetic space group (see Figure 8). It is 
important to stress that not only the magnetic moments but also the positions of all atoms 
in the unit cell are obtained by the application of the magnetic symmetry operations to 
the asymmetric unit listed in the mCIF file. 

 

Figure 9: Part of the mCIF file for the Pa21/c (#14.80) model of CrCl2 that contains the information on the 
atomic positions and magnetic moments of the asymmetric unit. 

The obtained mCIF file can be read by the refinement programs JANA2006 or FULLPROF, 
and if diffraction data were available could be used as a starting symmetry-constrained 
model to be refined. One must stress in this case that care should be taken that the 
diffraction data is indexed consistently with the parent-like unit cell that is being 
employed to describe the structure. The mCIF file obtained from MAXMAGN can also be 



read by VESTA or Jmol for visualization purposes, and it can also be employed with 
ISODISTORT to analyse the model in terms of  irrep modes. The tool MVISUALIZE in the 
Bilbao Crystallographic Server can also read these files, and provides an inmediate 3D 
visualization with Jmol without the need of any program installation. 

k) Load the mCIF file in the VESTA program to visualize the model. Something similar 
to the representation shown in Figure 10(a) can be obtained. 

 

a  
b  

 

Figure 10: (a) Magnetic ordering in CrCl2 according to the magnetic space group Pa21/c (#14.80) 
using the parent-like setting (a,2b,2c;0,0,0), and having arbitrarily restricted the spins to the plane 
xy. (b) Magnetic ordering equivalent to the one in (a) corresponding to a twin-related 
configuration.  Its symmetry is given by a magnetic subgroup conjugate to the one associated with 
the structure in (a).  The two arrangements are related for instance by the lost operation {2z'|0, 0, 
0} that is present in the paramagnetic phase. 

l) Go back to the main output page and click on "alternatives (domain-related)" for 
the same group. The program prompts then a page with the list of distinct subgroups 
belonging to the same conjugation class (see Figure 11). One can see that there is an 
alternative subgroup which is conjugate to the one chosen by the program. This conjugate 
subgroup will correspond to a physically equivalent configuration that is domain-related 
with the first one (the one chosen by the program). By clicking "choose" on this second 
magnetic space group we change the choice of subgroup of type Pa21/c (#14.80) to this 
second one. We obtain then, following the same procedure as above, a magnetic 
configuration different from the one in Figure 4(a), but equivalent. It corresponds to its 
transformation by one of the lost operations belonging to the parent grey group.  The 
result to be obtained is shown in Figure 4(b). One can see there that the individual local 
couplings of FM or AFM type between neighbouring specific sites should not be 
considered as an absolute part of the magnetic structural model, as they depend on which 
of the two equivalent descriptions is chosen. 

 



 

Figure 11: Listing of the two subgroups of type Pa21/c (#14.80) of the group Pnnm1' that form a 
conjugation class, and could describe a magnetic ordering with propagation vector (0, 1/2, 1/2) of maximal 
symmetry in CrCl2. The first subgroup is the one chosen by default by MAXMAGN, while the second one 
corresponds to a domain-related physically equivalent configuration. The user can change the choice of the 
representative subgroup, and therefore the chosen configuration, by clicking on the button of the last 
column. The 3x3 matrix and column vector listed indicates the transformation of each subgroup to the 
standard setting of the group type, and defines unambiguously each subgroup. 

 

 

m) Come back to the main output page of the magnetic structure under the group 
Pa21/c (#14.80) described in the parent-like setting (Figure 7), after having 
switched back to the default choice of the subgroup, and click on the button "use an 
alternative setting". An mCIF with a description using a smaller unit cell that avoids the 
centering {1|0, 1/2, 1/2} can be obtained with this option (see Figure 12). The cost is 
having an oblique unit cell with respect to the Pnnm setting. This description is specially 
appropiate for ab-initio calculations, as it uses a minimal unit cell. To do that introduce as 
desired basis transformation from the parent: (a,b+c,-b+c;0,0,0). The input matrix follows 
the same rule as in other cases, i.e. each matrix column represents a transformed basis 
vector. The output provided for this user-defined setting is more limited than for the 
default choice, but the corresponding mCIF file can be equally produced. Introduce 
arbitrary values for the moment components, similar to those in the previous setting. 
Taking into account the basis transformation, the moment chosen previously would be (3, 
0 .5, 0.5) in this new basis.  Download the corresponding mCIF file, and visualize it with 
VESTA (see Figure 13) or MVISUALIZE. 



 

Figure 12: Menu to introduce an alternative user-chosen setting (unit cell) to describe the magnetic 
structure, once one of the possible k-maximal magnetic symmetries has been chosen. The unit cell 
introduced must be consistent with the periodicity of the magnetic ordering, and this is cross-checked by 
the program. 

 

Figure 13: Magnetic structure as in Figure 10(a), using a primitive unit cell basis related with the parent 
unit cell by (a,b+c,-b+c;0,0,0). 
 

n) Open the tool STRCONVERT at the Bilbao crystallographic server and introduce 
the mCIF file. This tool allows various editing and save operations of the information of 
the mCIF. Here we apply the button "Transform the structure to P1 setting" to obtain a 
listing of all the atoms in the unit cell with their magnetic moments (see Figure 14). This 
can be specially useful for an ab-initio calculation using a code that works without 
symmetry and requires the information on all atoms in a primitive unit cell. The orbit of 
magnetic atoms in the primitive cell used is reduced to four atoms. The first two Cr atoms, 
Cr1_1 and Cr1_2, are those in the Pnnm unit cell at the origin and at (1/2, 1/2, 1/2) 
transformed to the new basis, while the two additional ones are those related by a 
translation c of the parent unit cell. The latter have therefore opposite moments as 
obliged for a magnetic ordering with a propagation vector (0, 1/2, 1/2). Therefore the 
specific features that define this model with k-maximal magnetic symmetry reduce to the 



moment relation (mx, -my, -mz) of Cr1_2 with respect to the moment (mx, my, mz) of 
Cr1_1, the remaining relations being obliged by the value of the propagation vector. 

 

Figure 14: Main menu page (partial) of STRCONVERT after introducing the mCIF file of the magnetic model 
of k-maximal symmetry using a setting (a, b+c,-b+c;0,0,0) with respect to the parent Pnnm, and after having 
clicked "Transform the structure to P1 setting". The program lists positions and magnetic moments of all 
atoms in the unit cell. 

p) Obtain the equivalent domain-related configuration described in the same 
primitive magnetic unit cell following the same steps as above. Use then STRCONVERT 
again to list all atoms in the unit cell: 

 

Figure 15: Main menu page (partial) of STRCONVERT after introducing the mCIF file of the alternative 
domain-related magnetic model of k-maximal symmetry using a setting (a, b+c,-b+c;0,0,0) with respect to 
the parent Pnnm, and after having clicked "Transform the structure to P1 setting". The program lists 
positions and magnetic moments of all atoms in the unit cell, which can be compared with those in Figure 
14. 



 

In Figure 15, the atom listed as Cr1_4 is the one listed as Cr1_2 in the previous model. The 
relation of the moment of this atom with the one of Cr1_1 is now (-mx, my, mz), i.e. just 
the opposite spin coupling, although it describes a fully equivalent spin configuration. 
This means that if the spin configuration were a collinear arrangement restricted along x 
or on the plane yz, individual local FM or AFM couplings between neighbouring atoms 
have no absolute meaning as description of the spin configuration. 

Epilogue to this first example: The case of CrCl2 was considered by Izyumov et al. in 
their book  "Neutron Diffraction of Magnetic Materials" [6] as a paradigmatic example, 
which according to these authors demonstrated the insufficiency of the magnetic space 
groups to describe the spin correlations occuring in many magnetic structures. This 
reference assumed that the magnetic structure of CrCl2 is a collinear arrangement on the 
plane xy, with the moments of the Cr atoms at the origin and at (1/2, 1/2, 1/2) being 
equal and opposite. From the considerations above, it is clear that the model considered 
in this reference is incompatible with any of the two possible k-maximal symmetries, and 
its symmetry is limited to its common subgroup Ps-1 (see Figure 4), where the two Cr 
sites would be symmetry independent. Therefore the opposite values of the moments in 
the two Cr sites, which were assumed in that model,  would be an important constraint 
satisfied by this magnetic phase that was not explained by its magnetic symmetry.  A 
revision of the original reports on the magnetic structure of CrCl2 shows however that the 
collinear model on the xy plane assumed by Izyumov et al. has not very solid ground. The 
experimental data presented in these old publications are extremely poor and their fit to 
more symmetrical configurations did not seem to have been checked. Furthermore, some 
recent unpublished ab-initio calculations and new refinements using the scarce poor data 
available in the literature indicate that the monoclinic arrangement of k-maximal 
symmetry discussed above is probably a more appropiate model for the magnetic phase 
of this compound. 

Comparison with the representation method: 
The little group of the propagation vector (0, 1/2, 1/2) is the full group Pnnm. As can be seen using 
REPRES (in the Bilbao crystallographic server) there are two 2-dim irreps of Pnnm for this wave 
vector: T1+ and T1- (T is the standard label for the vector (0, 1/2, 1/2) in the Brillouin zone). 
Therefore, for the grey group Pnnm1' there are two analogous irreps: mT1+ and mT1- , which can be 
relevant for a magnetic ordering (the symbol m is used to distinguish irreps odd for time reversal 
from even ones). The magnetic representation for this wave vector and limited to the magnetic 
moments of the Cr atoms is however restricted to the irrep mT1+, contained three times (see for 
instance the results using Basireps of the FullProf suite [2]): 
 
                       Mrepr = 3 mT1+ 

This means that any arbitrary spin configuration with a propagation vector (0, 1/2, 1/2)  transforms 
according to the irrep mT1+, and can therefore be described in terms of 6 basis functions associated 
with this irrep. In other words, the assumption of the magnetic ordering complying with a single 
irrep does not introduce any constraint, and the representation method is of no use in this example. 
This should be compared with the constraints introduced by the assumption of one of the two 
possible k-maximal magnetic groups discussed above, where the number of free parameters 
describing the spin configuration is limited to three in both cases.  

We can use ISOCIF and ISODISTORT [3] to perform the mode decomposition of the monoclinic model 
of k-maximal symmetry Pa21/c (#14.80) represented in Figure 10(a).  ISOCIF should be used to 



transform the mCIF produced above in step h) into a standard setting. This mCIF file in standard 
setting can be then uploaded in ISODISTORT (method 4) as the distorted structure to be decomposed 
into symmetry modes with respect to the Pnnm structure, which should have been uploaded 
previously as parent structure. The mode decomposition provided by ISODISTORT shows that the 
spin configuration corresponds as expected to mT1+, but restricted to a special direction in the 
representation space corresponding to the k-maximal symmetry discussed above, which is listed here 
as a so-called isotropy subgroup of the irrep mT1+. The number of listed basis modes complying with 
this specific symmetry is only three, as expected from the description done above using directly the 
magnetic space group.  

Summarizing, any arbitrary spin configuration in CrCl2 can be associated with the irrep mT1+, and 
therefore in this case the representation method in its traditional form is of no use.  A spin ordering 
restricted to have one of the k-maximal magnetic symmetries discussed above corresponds to the 
choice of a special direction of higher symmetry within the mT1+ representation (i.e. a specific linear 
combination of the three pairs of mT1+ basis functions), so that the number of free parameters in the 
possible combination of basis modes is restricted from 6 to 3. To assign a k-maximal magnetic group 
is therefore NOT equivalent to the assignment of an irrep, and introduces additional constraints. 

 

Example 2.   Orthorhombic HoMnO3 (see MAGNDATA #1.20) 

The paramagnetic structure of  HoMnO3 can be summarized as (Muñoz, A. et al., Inorg. 
Chem. (2001) 40 1020 - 1028): 

Space group: Pnma (#62) 
Lattice parameters: 
5.83536 7.36060 5.25722 
 
Asymmetric unit: 
Ho1 - 0.08390 0.25000 0.98250 
Mn1 - 0.00000 0.00000 0.50000 
O1 - 0.46220 0.25000 0.11130 
O2 - 0.32810 0.05340 0.70130 
 
Magnetic atoms: Ho1, Mn1 
 
 The magnetic phase of this compound is known to have a propagation vector 
k=(1/2, 0, 0) and its antiferromagnetic magnetic order induces a switchable electric 
polarization, being therefore a multiferroic in the broad sense that is presently employed.  
 
We can use MAXMAGN to explore the possible magnetic orderings of k-maximal 
symmetry with this propagation vector, to demonstrate that the parent space group and 
the propagation vector is sufficient information to predict that this system, if fully 
magnetically ordered, has a great probability of being  multiferroic. 
 
a) Introduce in MAXMAGN the propagation vector and the structural data of the 
parent structure of HoMnO3, either using the data above or with the corresponding CIF 
file, indicating the magnetic character of Mn and Ho. A list of four possible k-maximal 
magnetic space groups are obtained (see Figure 16) 
 



 
Figure 16: List of distinct k-maximal magnetic space groups for a parent space group Pnma and a 
propagation vector (1/2, 0, 0), as given by MAXMAGN, after having introduced the paramagnetic structure 
of HoMnO3 in the first input steps. The groups with darker background are those allowing a non-zero 
average magnetic moment for at least some of the Mn or Ho atoms. In this case, the four alternative 
symmetries are possible. 

 
It should be noticed that this list is comprehensive in the sense that it includes a 
representative of all the classes of magnetic subgroups equivalent by conjugation with 
respect the parent space group. The list therefore encompasses all possible non domain-
equivalent magnetic symmetries, which are consistent with the observed magnetic 
propagation vector, and have no supergroup (magnetic group) above them that also fulfils 
this condition. The determination of this list only requires the knowledge of the parent 
space group and the propagation vector k. The space groups are determined by 
mathematically searching among the subgroups of the grey group Pnma1’ of the parent 
phase all maximal subgroups which have as Bravais magnetic lattice the one defined by 
the vector k, i.e. the sub-lattice of the parent lattice formed by the parent lattice 
translations L that satisfy exp(i2k.L)= 1, but having also as "antitranslations" (i.e. 
translations combined with time reversal) parent lattice translations satisfying 
exp(i2k.L)= -1. The condition of the subgroups being maximal is considered in an 
extended form, disregarding intermediate subgroups of type II (grey groups), as by 
definition they contain the time reversal operation and therefore they cannot describe the 
symmetry of a magnetic phase.  
 
b) Explore the listed four possible models of maximal symmetry  by clicking on the 
last column headed with "magnetic structure". Check first that the models with 
monoclinic centrosymmetric symmetry Pc21/c(#14.82) and Pa21/m(#11.55) require that 
a half of the Mn atoms remain disordered with null magnetic moment. This means that a 
fully ordered magnetic arrangement of the Mn of maximal symmetry under the observed 
propagation can only be achieved under the non-centrosymmetric symmetries Pana21 
(#33.149) or Pbmn21 (#31.129).  The point symmetry in both cases is the grey polar point 



group mm21'. As shown by the listed transformation matrices, in both cases the polar axis 
is along the c axis of the Pnma setting. A multiferroic character of the magnetic phase 
should therefore be expected if all magnetic Mn atoms order and the phase symmetry is 
maximal. The polar direction is also predicted to be along the c axis. 
 

 
 
Figure 17: Atomic positions and magnetic moments (partial) of the asymmetric unit of HoMnO3 for the 
subgroup of Pnma1' of type Pc21/c (#14.82), listed N. 3 in Figure 16, as obtained when clicking in the 
column "Magnetic structure". The table indicates the Wyckoff orbit of positions and moments 
corresponding to all atoms that are symmetry related with the one listed as representative in the 
asymmetric unit (all described in the parent-like setting). The number of symmetry related atoms within 
the used unit cell (multiplicity) is given in the fourth column. The fifth column indicates the symmetry 
restrictions on the value of the components of the magnetic moment for the representative magnetic atom 
listed in the second column (if any), while the last column on the right allows to introduce specific values for 
the symmetry-free moment components. Both the Ho and Mn split into two independent sites. The bar in 
the fifth column for some of the magnetic sites indicates that the magnetic moment at this site is symmetry-
forced to be zero. 

c) Using the program k-SUBGROUPSMAG construct the graph of all magnetic subgroups 
(conjugate classes) consistent with the observed propagation vector, and check that apart from 
the monoclinic k-maximal subgroups there is only a third possible centrosymmetric symmetry, 
namely a subgroup of type Ps-1, which is a common subgroup of the two centrosymmetric 
monoclinic groups of maximal symmetry (see Figure 18). Check the operations belonging to this 
subgroup using the options of k-SUBGROUPSMAG. 



 
 
Figure 18: Graph (obtained with k-SUBGROUPSMAG) of all possible magnetic symmetries for a magnetic 
ordering with a paramagnetic structure with space group Pnma and a propagation vector (1/2 0 0). Only 
the BNS label of the corresponding group type is indicated. The k-maximal magnetic groups are highlighted 
with elliptical frames. Only one subgroup per conjugate class is shown. Except for the two monoclinic k-
maximal subgroups and its common subgroup Ps-1, all other possible symmetries are polar and allow an 
induced electric polarization. The three non-polar subgroups are not possible for a full magnetic ordering of 
HoMnO3, as they require that some Mn sites remain with zero moment. 

d) Click on the option "go to a subgroup" for the subgroup of Pnma1' of type Pc21/c 
(#14.82), listed N. 3 in Figure 16, and in the following menu choose as generators of the 
chosen subgroup the inversion operation  {-1|0, 0, 0} and the anti-translation {1'|1/2, 0, 
0}. Submit this subgroup and check in the output that by this means the subgroup Ps-1 has 
been chosen. Click  on the option "magnetic structure" of the next output page, and 
observe in the next output that a magnetic structure subject to this minimal 
centrosymmetric symmetry  still requires that some Mn atoms remain disordered with 
moment zero. You can therefore predict that whatever is the magnetic ordering of 
HoMnO3 with propagation vector (1/2,0,0), if it involves all Mn atoms it must necessarily 
break the centrosymmetry of the structure, and the system is bound to have (if the system 
is an insulator) a magnetically induced electric polarization with ferroelectric properties. 
 
e) Construct a magnetic structure complying with the maximal symmetry Pana21 
(#33.149) following the same procedure as in the example 1. Notice that in this case 
the difference between the standard setting and the parent-like is only an origin shift. The 
experimental diffraction data indicates that the Mn spins are essentially collinear along 
the x direction. Therefore introduce a non-zero value for the Mx component of the Mn 
independent atom, although as shown in the listing both polar symmetries allow an 
arbitrary direction for the Mn moment, that would have non-collinear character. Keep 
disordered the moment of the Ho atoms maintaining at zero their symmetry-allowed x 
and z components. Notice that this symmetry break splits into two the Ho site and the two 
oxygen sites of the parent structure. This means that many additional structural degrees 
of freedom are in principle triggered by the magnetic ordering and they can be taken into 
account in a controlled and systematic way, if the magnetostructural coupling is 
sufficiently strong to be detectable, using the magnetic space group for defining the 
constraints on the atomic positions. The atomic positions listed for the split atomic sites 
of the asymmetric unit satisfy among them the relations coming from the Pnma 



symmetry, but their separate listing within the new asymmetric unit would allows their 
independent refinement. A symmetry-consistent crosscheck of their possible deviation 
from the Pnma relations due magnetostructural couplings is therefore possible.  
 

 
 
Figure 19: Atomic positions and magnetic moments (partial) of the asymmetric unit of HoMnO3 for the 
subgroup of Pnma1' of type Pana21 (#33.149), listed N. 1 in Figure 16, as obtained when clicking in the 
column "Magnetic structure". The table indicates the Wyckoff orbit of positions and moments 
corresponding to all atoms that are symmetry related with the one listed as representative in the 
asymmetric unit (all described in the parent-like setting). The number of symmetry related atoms within 
the used unit cell (multiplicity) is given in the fourth column. The fifth column indicates the symmetry 
restrictions on the value of the moment components of the representative magnetic atom listed in the 
second column (if any), while the last column on the right allows to introduce specific values for its 
symmetry-free moment components. The Ho split into two independent sites, while the Mn remains a single 
independent site. The bar in the fifth column for some of the magnetic sites indicates that the magnetic 
moment at this site is symmetry-forced to be zero. 

 
f) Produce an mCIF file of the Pana21 (#33.149) model and visualize it with VESTA 
or Jmol. If only the magnetic atoms are visualized, it will be something similar to Figure 
20(a).  



a  
b  

Figure 20: (a) Possible k-maximal magnetic ordering for HoMnO3 according to the magnetic 
space group Pana21(#33.149) using the parent-like setting (2a,b,c;0,0,0), and having restricted the 
spins along x. (b) Magnetic ordering equivalent to the one in (a) corresponding to a twin-related 
configuration.  Its symmetry is given by a magnetic subgroup conjugate to the one associated with 
the structure in (a). The two arrangements are related for instance by the lost inversion operation 
{-1|0, 0, 0} present in the paramagnetic phase. This operation also switches the polarity and 
therefore the two magnetic configurations have opposite magnetically induced polarizations 
along the c direction. 

g) Come back to the main output list of k-maximal magnetic groups and click for 
"alternatives (domain related)" of the listed group Pana21(#33.149) to change to the 
second conjugate subgroup of this type. Follow then the same procedure as before and 
obtain the mCIF file of the corresponding magnetic arrangement. It is shown in Figure 
20(b). This arrangement is twin related with the previous one. The lost inversion 
operation for instance transforms one into the other. The two configurations are 
physically equivalent and correspond to domains having opposite magnetically induced 
electric polarizations along c.   

h) Come back to the main output list of k-maximal magnetic groups (Figure 16) and 
follow the same procedure for the second possible polar group Pbmn21 (#31.129). 
Notice in the output that in this phase if there is some magnetic ordering of the Ho atoms 
it can only happen along the b axis.  



 

Figure 21: Atomic positions and magnetic moments (partial) of the asymmetric unit of HoMnO3 for the 
subgroup of Pnma1' of type Pbmn21 (#31.129), listed N. 2 in Figure 16, as obtained when clicking in the 
column "Magnetic structure". The table indicates the Wyckoff orbit of positions and moments 
corresponding to all atoms that are symmetry related with the one listed as representative in the 
asymmetric unit (all described in the parent-like setting). The number of symmetry related atoms within 
the used unit cell (multiplicity) is given in the fourth column. The fifth column indicates the symmetry 
restrictions on the value of the moment components of the representative magnetic atom listed in the 
second column (if any), while the last column on the right allows to introduce specific values for its 
symmetry-free moment components. The Ho splits into two independent sites, while the Mn remains a 
single independent site. The bar in the fifth column for some of the magnetic sites indicates that the 
magnetic moment at this site is symmetry-forced to be zero. 

 

i) Restrict again the model to have the moments along the x axis and obtain the 
corresponding mCIF files for the two twin related configurations. They are depicted 
in Figure 22. This is actually the model that has been reported for HoMnO3 (see 
MAGNDATA 1.20). Note that the symmetry allows canting of the spins along the y and z 
directions, which would break the perfect collinearity, while keeping the symmetry. 



a  b  

Figure 22: (a) Possible k-maximal magnetic ordering for HoMnO3 according to the magnetic 

space group Pbmn21 (#31.129), using the parent-like setting (2a,b,c;0,0,0), and having restricted 
the spins along x. (b) Magnetic ordering equivalent to the one in (a) corresponding to a twin-
related configuration. Its symmetry is given by a magnetic subgroup conjugate to the one 
associated with the structure in (a). The two arrangements are related for instance by the lost 
inversion operation {-1|0, 0, 0} present in the paramagnetic phase. The inversion also switches 
the polarity and therefore the two magnetic configurations will have opposite values for the 
magnetically induced polarization along the c direction. This is the magnetic arrangement that has 
been reported for this compound (Muñoz, A. et al., Inorg. Chem. (2001) 40 1020 - 1028. See entry 1.20 of 
MAGNDATA). 

We have seen above that the atomic positions become split because of the symmetry 
break, and the symmetry relations that they have to fullfill rigorously in the magnetic 
phase are described by the same symmetry operations that are valid for the magnetic 
moments, which are listed in the mCIF file. The presence or not of time reversal in these 
symmetry operations is irrelevant for the atomic positions, which are then subject to the 
constrains of an effective space group obtained by disregarding the presence of time 
reversal in the operations.  This effective space group is the one used for the labelling of 
the magnetic space group in the OG description. Thus, in our case, the group Pbmn21 
(#31.129) in BNS notation is the group P2bm'n21' (#31.7.218) and in this case the 
effective space group for the atomic positions (and eletron density) is of the same type as 
the one used for the BNS notation, namely the space group Pmn21(#31).  

j) Come back to the main list of k maximal groups (Figure 16) and click on the 
column "general positions" for the group Pbmn21 (#31.129) (previously switch back 
the group to its default choice) in order to see the symmetry operations of the group in 
the parent-like setting, and derive the effective space group for the atomic positions in 
this setting : 



 

Figure 23: General positions or representative symmetry operations of the subgroup of Pnma1' of type 
Pbmn21 (#31.129), listed N. 2 in Figure 16, in the parent-like setting (2a,b,c;0,0,0), as obtained when clicking 
in the column "general positions".  

One can see that the primitive unit cell of the effective lattice for the non-magnetic 
degrees of freedom is half the size of the magnetic unit cell, since for the non-magnetic 
degrees of freedom the operation {1'|1/2 0 0} is fully equivalent to a centering translation 
{1|1/2 0 0}. The effective space group is then given by the operations:  {1| 0 0 0 }, { 2001| 
3/4 0 1/2} , {m010| 0 1/2 0 }, { m100| 3/4 1/2 1/2 }, plus the centering translation {1| 1/2 0 
0}. Therefore, the effective primitive unit cell for the atomic positions remains the parent 
unit cell (a,b,c;0,0,0). If we use this parent basis for the atomic positions instead of the 
parent-like one, the operations of the effective space group constraining the atomic 
positions is then given by the operations: 

{1| 0 0 0 }, { 2001| 1/2 0 1/2 } , { m010| 0 1/2 0 }, { m100| 1/2 1/2 1/2 } or 

x,y,z 
-x+1/2,-y,z+1/2 
x,-y+1/2,z 
-x+1/2,y+1/2,z+1/2 
 



This is indeed a space group of type Pmn21(#31) in a non-standard setting. The standard 
setting can be reached with the transformation (-b, a, c; 1/4, 1/4, 0) (you can check it 
using IDENTIFY GROUP in the Bilbao Crystallographic Server). 

Comparison with the representation method: 
The little group of the propagation vector (1/2, 0, 0) is the full group Pnma. As can be seen using 
REPRES (in the Bilbao crystallographic server) there are two 2-dim irreps of Pnma for this wave 
vector: X1 and X2 (X is the standard label for the vector (0, 1/2, 1/2) in the Brillouin one). Therefore, 
for the grey group Pnma1' there are two analogous irreps: mX1 and mX2 , which can be relevant for 
a magnetic ordering (the symbol m is used to distinguish irreps odd for time reversal from even 
ones). The magnetic representation for this wave vector and limited to the spins of the Mn atoms 
decomposes into these irreps in the following form (see for instance the results using Basireps of the 
FullProf suite [2]): 
                       Mrepr = 3 mX1 + 3 mX2 

Therefore, the assumption of the magnetic ordering complying with one of the two single irreps 
reduces the numbers of degrees of freedom of the spin configuration from 12 to 6, i.e. there are 6 
independent spin basis functions to be considered, and therefore 6 refinable parameters when 
describing a spin configuration of the Mn atoms complying with one of the two irreps. This should be 
compared with the constraints introduced by the assumption of one of the four possible k-maximal 
magnetic groups discussed above, where the number of free refinable parameters describing the spin 
configuration is limited to three in any of the four cases. Using ISODISTORT as in the previous 
example one can check that the k-maximal subgroups Pbmn21 and Pa21/m correspond to spin 
configurations according to the irrep mX1, but restricted within a special "direction" in the 
representation space. This means that the mX1 basis functions must be combined in a specific form 
such that the number of free parameters reduces from 6 to 3. Pbmn21 and Pa21/m are so-called 
isotropy subgroups (or epikernels) of the irrep mX1. Similarly, Pana21 and Pc21/c are isotropy 
subgroups (epikernels) of the irrep mX2 and the restriction of the configuration to one of these 
alternative symmetries reduces the number of effective basis functions from 6 to 3. 

Summarizing, the spin ordering in HoMnO3 complies with one of the k-maximal magnetic symmetries 
discussed above, namely Pbmn21 (#31.129), and it corresponds to the choice of a special direction of 
higher symmetry within the space of mX1 distortions, so that the number of free symmetry-adapted 
basis modes is restricted from 6 to 3. To assign this k-maximal magnetic group is NOT equivalent to 
the assignment of the irrep mX1. It introduces additional constraints. 

 

Example 3: KFe3(OH)6(SO4)2 (MAGNDATA #1.25) 

The paramagnetic structure of this compound can be found in the Inorganic Crystal 
Structure Database (ICSD, #34344): 

Space group R-3m (#166) 

Lattice parameters: 
7.30400 7.30400 34.53600 90.00 90.00 120.00  
 
Asymmetric unit: 
Fe 1 -   0.5 0.0 0.5 
K  1 - 0.00000 0.00000 0.00000 
O  1 - 0.00000 0.00000 0.39340 
O  2 - 0.21800 -0.21800 -0.05430 
O  3 - 0.12470 -0.12470 0.13510 



S  1 - 0.00000 0.00000 0.30840 
 
Magnetic atom: Fe 
 
The magnetic phase of this compound is known to have a propagation vector  
k=(0, 0, 3/2).   
 
The Fe atoms in this compound lie on layers forming 2D Kagome lattices, and their spin 
arrangement was studied by Inami, T. et al., J. of Magn. and Magn. Mat. (1998) 177, 752 
(see MAGNDATA #1.25). In this reference no symmetry arguments were applied and the 
model proposed was found, according to the authors, by checking 24 different alternative 
possible configurations. The exercise below with MAXMAGN shows however that there 
are only two configurations of highest symmetry which should be first considered as 
being the most probable, and in fact, the model proposed by this experimental study is 
one them. 
 
a) Introduce the data in MAXMAGN using the cif file or the listing above, and flag Fe 
as magnetic. Four possible k-maximal magnetic symmetries are listed as possible, from 
which two of them allow a non-zero magnetic moment of the Fe site (see Figure 24).  
Check that there are no twin-related configurations described by alternative conjugate 
groups, by clicking on "alternative (domain-related)". 
 

 
Figure 24: List of distinct k-maximal magnetic space groups for a parent space group R-3m and a 
propagation vector (0, 0, 3/2), as given by MAXMAGN, after having introduced the paramagnetic structure 
of KFe3(OH)6(SO4)2 in the first input steps. The groups with darker background are those allowing a non-
zero average magnetic moment for at least some of the Fe atoms. Only two of the symmetries are therefore 
possible for the magnetic Fe ordering. 

 

 

 



b) Click on the fifth column to see the systematic absences of any of the two allowed 
groups (they are the same): 

 

Figure 25: Systematic absences for the k-maximal subgroup of type RI-3c, listed N. 2 in Figure 24, as given 
by MAXMAGN, after having clicked on the column headed with "systematic absences".  

To understand the listing of systematic absences obtained (see Figure 25) one has to take 
into account that the used (h,k,l) indices correspond to the parent-like basis (a, b, 2c). 
Firstly, the absences for any reflection (h,k,l) are given. On one hand, the centering 
translation {1| 1/3 2/3 1/3 } yields the extinction for h+2k+l different from a multiple of 
3. Secondly, the antitranslation {1'|0,0,1/2} forces the absence of magnetic diffraction for 
l even.  

If one transforms the (h,k,l) indexation into a description in terms of the propagation 
vector k=3/2c*, the meaning of these absences becomes rather simple: 
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The l index is therefore 2lo+3m, with lo being the index of a neighboring reflection 
associated with non-magnetic diffraction index in the parent basis. Therefore, the 
systematic absence for l even just means that second order magnetic reflections with m=2 
are forbidden, and therefore magnetic and non-magnetic diffraction reflections do not 
overlap. This is a general property of all magnetic space groups of type IV, i.e. those that 
have antitranslations. The other systematic absence is a signature of the R centering.  

On the other hand, the specific absence of all magnetic reflections of type (0,0,l) is much 
more specific. It is related with the existence of the three-fold symmetry in the magnetic 
group. The breaking of this extinction would imply that the symmetry of the ordering is 
necessarily lower, having broken the three-fold rotation symmetry. 



c) Come back to the main list of k-maximal groups (Figure 24) and using the button 
in the last column for the group RI-3m (#166.102) obtain a magnetic structure 
complying with this symmetry. The listing obtained (see Figure 26) shows that the 
moment of the representative Fe site in the asymmetric unit is forced to lie along the 
(1,0,0) direction. Note that the parent-like setting used is (a,b,2c;0,0,0), and if it were 
fitted to a diffraction pattern, the diffraction data should indexed consistently with this 
magnetic unit cell. 

 

 

Figure 26: Atomic positions and magnetic moments (partial, only Fe site shown) of the asymmetric unit of 
KFe3(OH)6(SO4)2  for the subgroup of type RI-3m  (#166.102), listed N. 4 in Figure 24, as obtained when 
clicking in the column "Magnetic structure". The table indicates the Wyckoff orbit of positions and moments 
corresponding to all atoms that are symmetry related with the one listed as representative in the 
asymmetric unit (all described in the parent-like setting). The number of symmetry related atoms within 
the used unit cell (multiplicity) is given in the fourth column. The fifth column indicates the symmetry 
restrictions on the value of the moment components of the representative magnetic atom, while the last 
column on the right allows to introduce specific values for its symmetry-free moment components.  

d) Assign an arbitrary initial value to the component Mx of Fe, and save the 
resulting mCIF file. This file could be introduced for a refinement of the model in the 
refinement programs JANA2006 or FULLPROF, if diffraction data were available, of it 
could be subject to an irrep mode analysis with ISODISTORT. We only use it here for the 
visualization of the model with VESTA or Jmol (see Figure  27). 



 

 

 
a 

 

b  

 

Figure 27: Possible magnetic ordering with k-maximal symmetry for KFe3(OH)6(SO4)2 
according to the magnetic space group RI-3m (#166.102) using the parent-like setting 
(a,b,2c;0,0,0). The Fe magnetic moment is only scale free. (a) Arrangement of Fe spins within a 
unit cell. (b) view of one of the layers on the xy plane showing the Kagome lattice of Fe atoms. 

e) Come back to the main list of k-maximal groups and using the button in the last 
column for the group RI-3c (#167.108) obtain a magnetic structure complying with 
this symmetry. The listing obtained (see Figure 28) shows that the moment of the 
representative Fe site in the asymmetric unit is forced to have its component on the plane 
xy along the (1,2,0) direction, but a component along the z axis is allowed.  

 

 

Figure 28: Atomic positions and magnetic moments (partial, only Fe site shown) of the asymmetric unit of 
KFe3(OH)6(SO4)2  for the subgroup of type RI-3c  (#167.108), listed N. 2 in Figure 24, as obtained when 



clicking in the column "Magnetic structure". The table indicates the Wyckoff orbit of positions and moments 
corresponding to all atoms that are symmetry related with the one listed as representative in the 
asymmetric unit (all described in the parent-like setting). The number of symmetry related atoms within 
the used unit cell (multiplicity) is given in the fourth column. The fifth column indicates the symmetry 
restrictions on the value of the moment components of the representative magnetic atom, while the last 
column on the right allows to introduce specific values for its symmetry-free moment components.  

f) Assuming that the plane xy is the easy plane for the magnetic ordering, assign an 
arbitrary initial value to the Mx of Fe, keeping zero the Mz component, and save the 
resulting mCIF file. This mCIF file could then be introduced for a refinement of the model 
in the programs JANA2006 or FULLPROF, if diffraction data were available, or it could 
subject to an irrep mode analysis with ISODISTORT. We only use it here for the 
visualization of the model with VESTA or Jmol (see Figure 29). This is in fact the model 
proposed by Inami, T. et al., J. of Magn. and Magn. Mat. (1998) 177, 752 (see MAGNDATA 
#1.25) after checking 24 different configurations. 

 
a 

 
 

b  

Figure 29: Possible magnetic ordering with k-maximal magnetic symmetry for KFe3(OH)6(SO4)2 
according to the magnetic space group RI-3c (#167.108), described in the parent-like setting 
(a,b,2c;0,0,0). A symmetry allowed z-component of the spins is not included. (a) Arrangement of 
Fe spins within a magnetic unit cell. (b) view of one of the layers on the xy plane showing the 
Kagome lattice of Fe atoms. 

Comparison with the representation method: 
The little group of the propagation vector (0, 0, 3/2) is the full group R-3m. As can be seen using 
REPRES (in the Bilbao crystallographic server) there are six irreps of R-3m for this wave vector. 
Therefore, for the grey group R-3m1' there are six analogous irreps which can be relevant for a 
magnetic ordering, i.e. which are odd for time reversal, namely the 1-dim irreps mT1+, mT2+, mT1- 
,mT2- and the 2-dim irreps mT3+ and mT3- (the symbol m is used to indicate that they are odd for 
time reversal). The so-called magnetic representation for this wave vector and limited to the spins of 
the Fe atoms decomposes into irreps in the following form (see for instance the results using Basireps 
of the FullProf suite [2]): 

                       Mrepr =  2 mT1- + mT2- + 3 mT3- 

In contrast with the multidimensional irreps, which were relevant in the previous examples, for a 1-
dim irrep there is a one to one correspondence between the irrep and a magnetic space group. Thus, 
in this example the assumption of a magnetic ordering complying with one of the two 1-dim irreps is 
equivalent to the assigning of a specific magnetic space group. The magnetic symmetry associated 
with a magnetic distortion according to either mT1- or mT2- is in fact given by the group RI-3c 
(#167.108) or RI-3m (#166.102), respectively, which are the k-maximal magnetic space groups 



discussed above. This is a general property: magnetic space groups associated with magnetic 
orderings complying with a single 1-dim irrep are k-maximal in the sense used here. In the present 
case the magnetic ordering corresponds to the 1-dim irrep mT1-. 

Summarizing, in contrast to the previous examples, to say that the magnetic phase of 
KFe3(OH)6(SO4)2 has symmetry RI-3c (#167.108) or that it complies with the irrep mT1- of R-3m are 
equivalent statements in what concerns the resulting constraints for the atomic magnetic moments. 
One should however consider that the magnetic symmetry assignment includes additional 
information, as it also comprehends the constraints on all degrees of freedom of the material, 
including non-magnetic ones, macroscopic properties (subject to the associated point group 
symmetry -3m1') and the knowledge of symmetry-related systematic absence rules in unpolarized 
neutron magnetic diffraction patterns (see program MAGNEXT in the Bilbao Crystallographic 
Server). 

 

Example 4: Na2MnF5 (MAGNDATA #1.55) (Nuñez, P. et al., Solid State Commun. (1994) 
92 , 601) 

Paramagnetic structure   

Space Group: P21/c (#14) 

unit cell parameter:  
7.7197 5.2402 10.8706 90.000 108.991 90.000 
 
F1 -   0.04480 0.15100 0.16290 
F2 -  -0.10830 0.29780 -0.07580 
F3 -  0.25140 0.16200 0.00310 
F4 -  0.61790 0.21920 0.13470 
F5 -   0.49180 0.24420 -0.12280 
Mn1 -  0.00000 0.00000 0.00000 
Mn2 -  0.50000 0.00000 0.00000 
Na1 -  0.15350 -0.01070 0.36470 
Na2 -  0.34410 0.44390 0.17996 
 
(or a similar model from ICSD #61206) 
 
Magnetic atoms: Mn1, Mn2 
 
Propagation vector (0, 1/2, 0) 
 
Following a similar procedure as in previous examples, and assuming that the moments 
are oriented along the x direction obtain the two possible magnetic structural models of 
k-maximal symmetry represented in its two twinned forms in Figure 30. The magnetic 
ordering reported by Nuñez et al. is in fact the one having the monoclinic symmetry Pbc, 
with the additional restriction of making equal the moment moduli of the two 
independent Mn sites, and the moments restricted along the x axis. This magnetic 
ordering breaks the centrosymmetry of the paramagnetic phase, the symmetry being 
polar. 
 



Derive from the output of MAXMAGN that non-collinear AFM cantings along y and z are 
allowed in this phase. 
 
 
 

 
                   Pbc (a,2b,c;0 1/4 0) 
 

 
                           Pbc (a,2b,c;0 3/4 0) 

 
                    Ps-1 (a,-c,2b;0 0 0) 

 
                   Ps-1 (a,-c,2b;0 1/2 0) 

 

Figure 30: Magnetic moment arrangements assumed along x for the Mn atoms of Na2MnF5 subject 
to each of the possible magnetic space groups of maximal symmetry. Symmetry independent Mn 
atoms are distinguished by arbitrary different moment values. Half of the Mn moments must 
remain disordered in the centrosymmetric arrangements. The two twin-related configurations for 
each group type are related by the lost binary rotation. Additional trivial twinned configurations 
are obtained by switching all magnetic moments (time reversal operation). 

Comparison with the representation method: 
This is a similar case to that of example 1. The assumption of a single irrep active does not constraint 
the spin configuration as the magnetic representation of the two Mn atoms only includes a single 
irrep. The little group of the propagation vector (0, 1/2, 0) is the full group P21/c. As can be seen 
using REPRES (in the Bilbao crystallographic server) there is only one 2-dim irrep of P21/c for this 
wave vector: Z1 (Z is the standard label for the vector (0, 1/2, 0) in the Brillouin one). Therefore, for 
the grey group P21/c1' there is one analogous irrep: mZ1, which can be relevant for a magnetic 
ordering (the symbol m is used to distinguish irreps that are odd for time reversal from even ones). 
The magnetic representation for this wave vector and the magnetic moments of the two independent 
Mn atoms can only contain this irrep (see for instance the results using Basireps of the FullProf suite 
[2]): 
 
                       Mrepr = 6 mZ1 

This means that any arbitrary spin configuration with a propagation vector (0, 1/2, 0)  transforms 
according to the irrep mZ1, and can be described in terms of 12 basis functions associated with this 
irrep. In other words, the assumption of the magnetic ordering complying with a single irrep does 



not introduce any constraint, and the representation method is of no use for this case. This should be 
compared with the constraints introduced by the assumption of one of the two possible k-maximal 
magnetic groups discussed above, where the number of free parameters describing the spin 
configuration is limited to six in both cases.  

Summarizing, any arbitrary spin configuration in Na2MnF5 with the observed propagation vector 
can be associated with the irrep mZ1, and therefore in this case the representation method in its 
traditional form is of no use.  A spin ordering restricted to have one of the k-maximal magnetic 
symmetries shown above corresponds (see example 1) to the choice of a special direction of higher 
symmetry within the mZ1 representation (i.e. a specific linear combination of the six pairs of mZ1 
basis functions), so that the number of free parameters in the possible combination of basis modes is 
restricted from 12 to 6. Hence, to assign a k-maximal magnetic group is NOT equivalent to the 
assignment of an irrep, and introduces additional constraints. 
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